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Abstract. The behavior of the non-perturbative parts of the isovector–vector and isovector and isosinglet
axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model
with non-local quark–quark interactions. The gauge covariance is ensured with the help of the P -exponents,
with the corresponding modification of the quark–current interaction vertices taken into account. The low-
and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with
the QCD operator product expansion, respectively. The V − A combination of the correlators obtained
in the model reproduces quantitatively the ALEPH and OPAL data on hadronic τ decays, transformed
into the Euclidean domain via dispersion relations. The predictions for the electromagnetic π± − π0 mass
difference and for the pion electric polarizability are also in agreement with the experimental values. The
topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment
is predicted to be χ′(0) ≈ (50 MeV)2. In addition, the fulfillment of the Crewther theorem is demonstrated.

1 Introduction

The vector (V ) and axial-vector (A) current–current corre-
lators are fundamental quantities of the strong interaction
physics, sensitive to small- and large-distance dynamics.
They serve as an important testing ground for QCD as well
as for effective models of strong interactions. In the limit
of the exact isospin symmetry the V and A correlators in
the momentum space (with −q2 ≡ Q2 ≥ 0) are defined by

ΠV,ab
µν (q) = i

∫
d4xeiqxΠV,ab

µν (x)

=
(
qµqν − gµνq2)ΠV

T (Q2)δab, (1.1)

ΠA,ab
µν (q) = i

∫
d4xeiqxΠA,ab

µν (x) (1.2)

=
(
qµqν − gµνq2)ΠA

T (Q2)δab + qµqνΠA
L (Q2)δab,

ΠJ,ab
µν (x) = 〈0 ∣∣T {

Ja
µ(x)Jb

ν(0)†}∣∣ 0〉,
where the QCD currents are

Ja
µ = qγµT aq, J5a

µ = qγµγ5T
aq, (1.3)

and T a denote the generators of the SUF (2) flavor group,
normalized to trT aT b = 1

2δab. The momentum-space two-
point correlation functions obey a (suitably subtracted)
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dispersion relation,

Π(Q2) =
1
π

∫ ∞

0

ds

s + Q2 Im Π(s), (1.4)

where the imaginary parts of the correlators determine the
spectral functions

v1(s) = 4π Im ΠV
T (s + i0),

a1(s) = 4π Im ΠA
T (s + i0). (1.5)

Recently, the inclusive non-strange V and A spectral func-
tions have been determined separately and with high pre-
cision by the ALEPH [1] and OPAL [2] collaborations from
the hadronic τ -lepton decays (τ → ντ+ hadrons) in the
interval of invariant masses up to the τ mass, 0 ≤ s ≤ m2

τ .
The difference of the V and A correlation functions is

very sensitive to the details of the spontaneous breaking
of the chiral symmetry. In particular, the behavior of this
combination is constrained by the chiral symmetry in the
form of sum rules obtained through the use of the optical
theorem [3–6]. The experimental separation of the V and
A spectral functions allows us to accurately test the chiral
sum rules in the measured interval [1, 2]. The coefficients
of the Taylor expansion of the correlators at Q2 = 0 are
expressed in terms of the low energy constants of the chi-
ral perturbation theory (χPT) [6]. On the other hand, the
large-s behavior of the correlators can be confronted with
perturbative QCD thanks to the sufficiently large value of
the τ mass. In the high-s limit ΠV (Q2) and ΠA(Q2) are



80 A.E. Dorokhov, W. Broniowski: Vector and axial-vector correlators in a non-local chiral quark model

dominated by the free-field correlator, corrected by non-
perturbative terms with inverse powers of Q2. This follows
from the fact that the correlators can be represented by
an operator product expansion (OPE) series and thus are
sensitive to the non-perturbative physics at smaller energy
scales [7]. Recently, the interest in the OPE expansion has
been revived due to a possible appearance of unconven-
tional quadratic power corrections, ∼ 1/Q2, found in [8],
and also observed in lattice simulations [9]. The ALEPH
and OPAL data have been intensely used in the literature
in order to place limits on the leading coefficients of the
χPT and OPE expansions (see, e.g., [10–15]).

The aim of this work is to calculate the non-pertur-
bative parts of the V and A current–current correlators
in the kinematic region reaching up to moderately large
Euclidean Q2 and to extract experimentally observed char-
acteristics. The calculations are carried out in the effec-
tive chiral model with non-local quark–quark interactions,
which is made covariant by the inclusion of the P exponents
in the non-local interaction vertex. A specific prescription
for the Wilson lines and their differentiation, described in
Sect. 3, follows exactly [16]. That way the model is made
consistent with the gauge invariance and can be used to
analyze the V and A correlators. The model is a non-local
extension of the well-known Nambu–Jona-Lasinio model.
Moreover, its non-local structure may be motivated by
fundamental QCD interactions induced by the instanton
and gluon exchanges, which induce the spontaneous break-
ing of the chiral symmetry and generate dynamically a
momentum-dependent quark mass. From the point of view
of the standard OPE, the whole series of power corrections
characterizes non-local properties of the QCD vacuum and
may be described in terms of the non-local vacuum conden-
sates [17,18]. The use of a covariant non-local low energy
quark model based on the self-consistent approach to the
dynamics of quarks has many attractive features, as it
preserves the gauge invariance, is consistent with the low
energy theorems, as well as takes into account the large-
distance dynamics controlled by the bound states. Similar
models with non-local four-quark interaction have been
considered earlier in, e.g., [19–28] and applied to describe
various low energy phenomena.

Non-local models have an important feature
which makes them advantageous over the local models,
such as the original Nambu–Jona-Lasinio model. At high
virtualities the quark propagator and the vertex functions
of the quark coupled to external fields reduce down to the
free quark propagator and to local, point-like couplings.
This property allows us to straightforwardly reproduce the
leading terms of the operator product expansion. For in-
stance, the second Weinberg sum rule is reproduced in
the model [25], which has not been the case of the lo-
cal approaches. In addition, the intrinsic non-localities,
inherent to the model, generate unconventional power and
exponential corrections which have the same character as
found in [8] and in the instanton model (see, e.g., [13]).
Recently, the non-local effective model was successively
applied to the description of the data from the CLEO
collaboration on the pion transition form factor in the in-

terval of the space-like momentum transfer squared up to
8 GeV2 [29,30]. Importantly, in that study at zero photon
virtualities the chiral anomaly results were reproduced,
while at high photon virtualities the factorization of short
and long distances occurs at a scale of the order of 1 GeV2.
This allowed for the extraction of the pion distribution am-
plitudes of leading and next-to-leading twists. There are
several further advantages in using the non-local models
compared to the local approaches. The non-local interac-
tions regularize the theory in such a way that the anomalies
are preserved [31, 32]. In other regularization methods in
the local models [33–35] the preservation of the anomalies
can only be achieved if the (finite) anomalous part of the
action is left unregularized, and only the non-anomalous
(infinite) part is regularized. Next, with non-local interac-
tions the model is finite to all orders in the 1/Nc (loop)
expansion. Finally, as shown in [27], stable solitons exist in
a chiral quark model with non-local interactions without
the extra constraint that forces the chiral fields to lie on
the chiral circle.

In the present paper we further test the non-local quark
model by carrying out an analysis of the momentum de-
pendence of the current–current correlators. A transfor-
mation of the spectral functions measured by the ALEPH
collaboration into the Euclidean momentum space allows
a precise and unambiguous comparison to be made of the
experimental data with the model calculations. This pa-
per is organized as follows. In Sect. 2, we briefly recall
the results of the chiral perturbation theory and operator
product expansion concerning the V and A correlators.
In Sects. 3 and 4, we outline the gauged non-local quark
model and introduce the quark–current vertices. Then we
derive the expressions for the non-perturbative parts of
transverse V and A correlators (Sect. 5) and, after fix-
ing the model parameters in Sect. 6, confront the results
with the available experimental data at large (Sect. 7) and
low (Sect. 8) Euclidean momenta. We explicitly demon-
strate the transverse character of the V and non-singlet
A correlators in Sect. 9. In Sect. 10 the contribution of the
UA(1) axial anomaly to the flavor-singlet longitudinal A
correlator is displayed and the topological susceptibility is
calculated as a function of the momentum. Below, in all
cases we use the strict chiral limit, with current quark mass
equal to zero. Numerically current quark mass corrections
to observables discussed in the paper do not exceed more
than a few percents.

2 Chiral sum rules
and the operator product expansion

Chiral sum rules are dispersion relations between the real
and absorptive parts of a two-point correlation function
that transforms symmetrically under SU(2)L × SU(2)R
(for the case of non-strange currents). Through the use of
the dispersion relations the sum rules are directly expressed
in terms of the difference of the V and A spectral densities.
Here is the list of sum rules, given in the strict chiral limit,
which are investigated in this paper. The first Weinberg
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sum rule (WSR I) [3],

1
4π2

∫ s0→∞

0
ds [v1 (s)− a1 (s)]

=
[−Q2ΠV −A

T

(
Q2)]

Q2→0 = f2
π , (2.1)

the second Weinberg sum rule (WSR II) [3],

1
4π2

∫ s0→∞

0
dss [v1 (s)− a1 (s)]

= Q2 [−Q2ΠV −A
T

(
Q2)]

Q2→∞ = 0, (2.2)

the Das–Mathur–Okubo (DMO) sum rule [4],

1
4π2

∫ s0→∞

0
ds

1
s

[v1 (s)− a1 (s)]

=
∂

∂Q2

[
Q2ΠV −A

T

(
Q2)]∣∣∣∣

Q2→0
= f2

π

〈
r2
π

〉
3
− FA,(2.3)

and, finally, the Das–Guralnik–Mathur–Low–Yuong
(DGMLY) sum rule [5],

− 1
4π2

∫ s0→∞

0
dss ln

s

µ2 [v1 (s)− a1 (s)] (2.4)

=
∫ ∞

0
dQ2 [−Q2ΠV −A

T

(
Q2)] =

4πf2
π

3α

[
m2

π± −m2
π0

]
,

where in the last equation α ≈ 1/137 is the fine structure
constant. In the chiral limit of massless quarks the DGMLY
sum rule is independent of the arbitrary normalization
scale, µ2, thanks to WSR II. It was shown by Witten [36]
that the positive electromagnetic mass shift of the charged
pions is a consequence of the DGMLY sum rule combined
with the positivity property of the V −A correlator,

−Q2ΠV −A
T

(
Q2) � 0, for 0 � Q2 �∞. (2.5)

According to Witten, if the bare u and d quarks were mass-
less and the mass shift were negative, the charged pions
would become tachyons destabilizing the QCD vacuum.

Whereas WSR I and DMO are low energy sum rules
(in the sense that the right-hand sides involve correlators
at low momenta), and are reproduced in most low energy
effective quark models, WSR II is a high-momentum sum
rule. In local models it is not reproduced, as discussed
shortly. The DMGLY sum rule collects contributions from
the whole range of Q2, both soft and hard.

The left-hand sides of the sum rules (2.1)–(2.4) have
been determined with the experimental data from [1, 2],
with s0 taken as the upper limit of the interval of the in-
variant mass covered by the experiment. The right-hand
sides of the sum rules are the theoretical predictions as
s0 → ∞. The DMO sum rule relates the derivative of
Q2 times the correlator to the square of the pion decay
constant fπ = (92.4± 0.3) MeV [37] obtained from the
decays π− → µ−νµ and π− → µ−νµγ, to the pion axial-
vector form factor FA = 0.0058 ± 0.0008 for the radia-
tive decays π− → l−νlγ, and to the pion charge radius

squared
〈
r2
π

〉
= (0.439± 0.008) fm2 obtained from a one-

parameter fit to the space-like data [38].
The listed chiral sum rules provide important restric-

tions on the correlators at low and high energies. The first
Weinberg sum rule (2.1) fixes the normalization of correla-
tors and holds in all variants of the Nambu–Jona-Lasinio
models, local or non-local. In general, the coefficients of
the Taylor expansion of the correlators at low Euclidean
momenta are given by the low energy constants of the
strong chiral Lagrangian. The second Weinberg sum rule
(2.2) signals that the leading asymptotics of the high Q2

power expansion of the V −A correlator essentially starts
from a dimension d = 6 term, and as such is valid in the
non-local versions of the effective chiral quark models [25].
In local models WSR II involves on the right-hand side
the large constituent quark mass times quark condensate,
Mq〈q̄q〉, thus is violated badly. In this regard the non-local
models are highly rewarding.

More detailed short-distance, or large Q2, properties
of the correlators are represented by the QCD operator
product expansion [7]. For the V −A and V +A combina-
tions the OPE provides the following leading-twist terms
in the chiral limit:

ΠV −A
T (Q2) =

∑
d=6,8...

Od
V −A

Qd
=

O6
V −A

Q6 +O
(

1
Q8

)
, (2.6)

ΠV +A
T (Q2) =

∑
d=0,2,4...

Od
V +A

Qd
(2.7)

= − 1
4π2

(
1 +

αs

π

)
ln

Q2

µ2 −
αs

4π3

λ2

Q2

+
1
12

〈
αs
π

(
Ga

µν

)2〉
Q4 +

O6
V +A

Q6 +O
(

1
Q8

)
,

where the vacuum matrix elements of the dimension d = 6
operators are

O6
V −A = παs

[〈
(uγµλad)

(
dγµλau

)〉
− 〈

(uγµγ5λ
ad)

(
dγµγ5λ

au
)〉]

, (2.8)

O6
V +A = −παs

[〈
(uγµγ5λ

ad)
(
dγµγ5λ

au
)〉

+
〈
(uγµλad)

(
dγµλau

)〉
+

2
9

∑
i=u,d

∑
j=u,d,s,...

〈(qiγµλaqi) (qjγµλaqj)〉
]
,

with λa being the color SU(3) matrices.
The V −A correlator does not acquire any perturba-

tive contribution in the limit of massless quarks; hence it is
sensitive entirely to the chiral symmetry breaking param-
eters. Already at relatively small Q2 the d = 6 term dom-
inates in the expansion of ΠV −A. On the other hand, the
sum of the correlators, ΠV +A, supplied with small power
corrections, is close to the free-field result for distances up
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to 1 fm [13]. In the expansion of ΠV +A we also included
d = 2 term which violates the original OPE expansion
of [7]. Motivation for inclusion this term into considera-
tion was given in [8]. In (2.6) and (2.7) we do not explicitly
show exponentially suppressed terms that may be induced
by existence of instantons [7]. The magnitudes of the vac-
uum matrix elements which appear in the OPE cannot be
fixed from first principles and are fitted to various hadronic
observables. Clearly, their determination is bound to carry
experimental and theoretical uncertainties. Only the sign
of the d = 6 term in the V − A correlator is fixed by the
Witten inequality: O6

V −A � 0.
Different models are used to estimate the vacuum ex-

pectation values. The standard approach in the calculation
of the dimension d = 6 matrix elements suggested and used
in original work [7] was to explore the factorization hypoth-
esis, i.e. the saturation of the four-quark matrix elements
with the intermediate vacuum state. Under these assump-
tions for the dimension d = 6 matrix elements one gets[

O6
V −A

]factor
= −32παs 〈qq〉2 /9,[

O6
V +A

]factor
= 64παs 〈qq〉2 /81. (2.9)

However, some authors conclude that probably the factor-
ization hypothesis is violated by a factor of 2–3 [39]. More-
over, a quite different result appears if one uses the instan-
ton liquid model to calculate these matrix elements [40,41].

In this work, for comparison with other model results,
we use the following typical values of the condensates found
via standard QCD sum rules without and with the inclu-
sion of the d = 2 term:

αs

π
λ2 = 0,

〈αs

π
(
Ga

µν

)2〉 = 0.012 GeV4,

αs 〈qq〉2 = 2.4 · 10−4 GeV6 [7, 11], (2.10)
αs

π
λ2 = −0.12 GeV2,

〈αs

π
(
Ga

µν

)2〉 = 0.022 GeV4,

αs 〈qq〉2 = 5.8 · 10−4 GeV6 [42]. (2.11)

The above values hold at a typical renormalization scale
of about 1 GeV.

3 Gauging non-local models

In local theories, the gauge principle of the minimum action
uniquely determines the interaction of the matter fields
with the gauge fields. However, in non-local theories such
an interaction may be introduced in various ways, and its
transverse part cannot be uniquely defined [43]. In order
to obtain the non-local action in a gauge-invariant form
with respect to external fields V and A, we define the
delocalized quark field, Q, with the help of the Schwinger
gauge phase factor, also known as the Wilson line or the
link operator,

Q(x, y) = P exp
{

i
∫ y

x

dzµ

[
V a

µ (z) + Aa
µ(z)γ5

]
T a

}
q(y),

Fig. 1. Diagrammatic representation of the effective non-local
four-quark interaction of (3.2). The hatched blobs represent
the non-local interactions, with the Γi matrices present, and
the dotted line indicates that the diagram can be cut across
this line without crossing the quark lines going across the blobs

Q(x, y) = Q†(x, y)γ0. (3.1)

Here V a
µ (z) and Aa

µ(z) are the external gauge vector and
axial-vector fields, respectively, and P is the operator of
ordering along the integration path, with y denoting the
position of the quark and x being an arbitrary reference
point. The P operator arranges the matrices in each term
of the expansion of the exponent from the left to the right
in the order determined by the point z moving along the
path from x to y.

We start with the non-local chirally invariant action
which describes the interaction of soft quark fields. The
non-local four-quark interaction is depicted in Fig. 1. The
soft gluon fields have been integrated out. The correspond-
ing gauge-invariant action for quarks interacting through
non-perturbative exchanges can be expressed in a form
similar to the Nambu–Jona-Lasinio model [16]

S =
∫

d4x q(x)γµ [i∂µ − Vµ (x)− γ5Aµ (x)] q(x)

+
1
2
G

∫
d4X

∫ 4∏
n=1

d4xn

×f(xn)
[
Q(X − x1, X)ΓiQ(X, X + x3)

×Q(X − x2, X)ΓiQ(X, X + x4)
]
, (3.2)

where in the simplest version of the model the spin-flavor
structure of the interaction is given by the matrix product

(Γi ⊗ Γi) = (1⊗ 1 + iγ5τ
a ⊗ iγ5τ

a) . (3.3)

In (3.2) q = (u, d) denotes the quark flavor doublet field, G
is the four-quark coupling constant, and τa are the Pauli
isospin matrices.

The delocalization of the quark fields with the inclu-
sion of the path-ordered Schwinger phase factors, see (3.1),
ensures the gauge invariance of the non-local action (3.2).
However, the presence of these factors modifies the quark–
current interaction, as shown graphically in Fig. 2. The
modification of the interaction, required by the gauge prin-
ciple, poses a technical difficulty in dealing with non-local
models, as many diagrams appear in the analysis of phys-
ical processes. The ambiguities in making the non-local
4-quark interaction gauge invariant are manifest in the
path-dependence in the definition (3.1), as well as in the
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Fig. 2. Diagrammatic representation of gauging of
the effective non-local four-quark interaction (3.2),
shown up to the second order in the expansion in
external fields, represented by the wavy lines. Note
that vertices involving one quark line and multiple
gauge fields appear

choice of the junction of the quark sources with the gauge
strings. In general, the Noether currents consist of two
components: the path-independent longitudinal part and
the path-dependent transverse part. The dependence of the
transverse component on the choice of the path is a feature
of any method employed in constructing the Noether cur-
rents corresponding to a non-local action, and this freedom
is immanent to the formulation of the model. We should
recall here that the discussed ambiguities in the construc-
tion of the transverse parts of the Noether currents are
by no means specific to chiral quark models. They also
appear, e.g., in nuclear physics when one considers meson-
exchange processes. To summarize, the choice of the path
in (3.1) is a part of the model building.

In what follows, we use the formalism [20, 43] based
on the path-independent definition of the derivative of the
integral over a line for an arbitrary function Fµ(z):

∂

∂yµ

∫ y

x

dzν Fν(z) = Fµ(y),

δ(4) (x− y)
∫ y

x

dzν Fν(z) = 0. (3.4)

This choice effectively means that the differentiation in-
volves moving the end-point of the line only, with the other
part of the line kept fixed. As a result, the terms with non-
minimal coupling, which are induced by the kinetic term
of the action, are omitted.

In general, external fields entering into (3.2) are arbi-
trary auxiliary fields; however, some of them can be asso-
ciated with electromagnetic, weak, or strong interactions.
In the case of the electromagnetic interactions, the gauge
factor takes into account the effects of the radiation of the

photon field when the two quarks are moving apart. This
formalism was used in [20,21,23–25] to represent the non-
local interaction in a gauge-invariant form. The incorpo-
ration of a gauge-invariant interaction with gauge fields is
of principal importance if one desires to treat correctly the
hadron characteristics probed by external currents, such as
hadron electromagnetic and weak form factors, structure
functions, distribution amplitudes, etc.

In (3.2) the functions f(xn), normalized to f(0) = 1,
form the kernel of the four-quark interaction and char-
acterize the space-dependence of the order parameter of
the spontaneous chiral symmetry breaking. Thus, the in-
teraction is treated in the separable approximation. The
choice of the non-local kernel in the form of (3.2) is mo-
tivated by the instanton-induced non-local quark–quark
interaction [19], where the non-local function f(xn) is re-
lated to the quark zero mode emerging in the instanton
field [18, 19]. To have the same flavor symmetry as in the
original instanton-induced ’t Hooft determinant interac-
tion one needs to add yet another piece of the form

G′ (τa ⊗ τa + iγ5 ⊗ iγ5) , (3.5)

with the coupling G′ = −G. This term will be important in
the discussion of the isosinglet axial currents in Sect. 10. In
the present work we do not consider an extended version of
the model that explicitly includes vector and axial-vector
degrees of freedom [23] (we take GV = 0, therefore gA = 1
and M2

V , M2
A →∞).

In order to compute physical quantities we must first
determine the full quark propagator and the full vertices
for the vector and axial-vector currents. All calculations
will be done in the leading order of the 1/Nc expansion,
also referred to as the one-quark-loop level or the ladder
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Fig. 3. Diagrammatic representation of the quark scalar self-
energy of (3.7)

approximation. In the non-local model the dressed quark
propagator, S(p), with the momentum-dependent quark
scalar self-energy (mass), M(p), is defined as

S−1(p) = p̂−M(p). (3.6)

Note that the considered model involves a constant quark
wave-function renormalization function, Z(p) = 1. The
equation for the quark propagator in the ladder approxi-
mation, also known as the gap equation,

M(p) = 4iGNfNcf
2(p)

∫
d4k

(2π)4
f2(k)

M(k)
k2 −M2(k)

, (3.7)

has the formal solution [23] of the form

M(p) = Mqf
2(p), (3.8)

with constant Mq ≡ M(0) determined dynamically from
(3.7). The quark self-energy is depicted in Fig. 3. Note that
the functions f(p) are treated non-dynamically, i.e. their
dependence on p is fixed, while M(p) is dynamical. Further-
more, the integrals over the momentum are calculated by
transforming the integration variables into the Euclidean
space, (k0 → ik4, k2 → −k2).

4 Conserved vector and axial-vector currents

The Noether currents and the corresponding vertices are
formally obtained as functional derivatives of the action
(3.2) with respect to the external fields at the zero value
of the fields. For our purpose, it is necessary to construct
the quark–current vertices that involve one or two currents
(contact terms). In the presence of the non-local interac-
tion the conserved currents include both local and non-
local terms. In order to expand the path-ordered exponent
in the external fields, we use the technique described in [20]
(see also [16,23]). Briefly, this method is as follows. First,
the Fourier transform of the interaction kernel in (3.2) is
obtained and expanded in the Taylor series in momemta.
Next, the momentum powers are replaced by the deriva-
tives acting on both the path-ordered exponent and the
quark fields. Finally, the inverse Fourier transform is per-
formed and summation is carried out again. The relations

(3.4) and∫
d4xF

(
x2) e−ipx

∫ λx+a

y

dzµ e−iqz

= iλ (2p + qλ)µ F (p + λq)− F (p)
(p + λq)2 − p2

e−iqa

+F (p)
∫ a

y

dzµ e−iqz, (4.1)

where F (z2) is an arbitrary function, are frequently used
in the procedure described above1. The longitudinal pro-
jection of the above relation is

qµ

∫
d4xF

(
x2) e−ipx

∫ λx+a

y

dzµ e−iqz

= i
[
F (p + λq) e−iqa − F (p) e−iqy

]
. (4.2)

The algebra needed to obtain the vertices with this method
is straightforward but somewhat tedious; hence, below we
present only the final results.

The vector vertex following from the model (3.2) is
(Fig. 4)

Γ a
µ (k, q, k′ = k + q) = T a

[
γµ − (k + k′)µM (1)(k, k′)

]
,

(4.3)
where M (1)(k, k′) is the finite-difference derivative of the
dynamical quark mass, q is the momentum correspond-
ing to the current, and k (k′) is the incoming (outgoing)
momentum of the quark, k′ = k + q. The finite-difference
derivative of an arbitrary function F is defined as

F (1)(k, k′) =
F (k′)− F (k)

k′2 − k2 . (4.4)

Thus, with the gauging prescription given by (3.2) and
(3.4), one gets the minimum-coupling vector vertex with-
out extra transverse pieces. The form of the vertex is the
same as the longitudinal vector vertex resulting from the
Pagels–Stokar construction [48]. The vertex satisfies the
proper Ward–Takahashi identity:

qµΓ a
µ (k, q, k′) = S−1

F (k′) T a − T aS−1
F (k) . (4.5)

The vector vertex (4.3) is free of kinematic singularities
and for this reason was advocated long ago in [48,49]. For
the case of the momentum-independent mass, as in local
models, the vertex (4.3) reduces to the usual local form,
Γ a

µ = T aγµ.
The bare axial-vector vertex obtained from the action

(3.2) by the differentiation with respect to the fields is
given by the formula (cf. Fig. 4)

Γ̃ 5a
µ (k, q, k′ = k + q)

1 We use the same symbol for the function and its four-
dimensional Fourier transform. That should cause no confusion,
since one can distinguish the functions by the notation in their
arguments, x or p, etc.
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Fig. 4. Diagrammatic
representation of the
bare quark–current ver-
tices (4.3) and (4.6)

Fig. 5. Diagrammatic representation of the full axial-vector
vertex obtained from the bare axial vertex supplied with rescat-
tering process of Fig. 6. In the present model there is no rescat-
tering in the vector channel, and ΓV = Γ̃V

= T a

γµ − (k + k′)µ

(√
M(k′)−√

M(k)
)2

k′2 − k2

+
qµ

q2 2
√

M(k′)M(k)
[

G

M2
q

JAP (q2)− 1
] γ5, (4.6)

where we have introduced the notation

JAP (q2) = 4NcNf

∫
d4l

(2π)4
M (l)
D (l)

√
M (l + q) M (l),

(4.7)

JAP (q2 → 0) =
M2

q

G
− q2J ′

AP (0) + O
(
Q4) , (4.8)

with

J ′
AP (0) =

NcNf

32π2 (4.9)

×
∫

du
uM (u) [4M ′ (u) + 2uM ′′ (u)]− u (M ′ (u))2

D (u)
,

where u = k2 and (in the Euclidean space)

D (k) = k2 + M2(k). (4.10)

In [16,45] it was demonstrated that in order to obtain
the full vertex corresponding to the conserved axial-vector
current it is necessary to add the term which contains the
pion propagator. The presence of this term is associated

with the well-known pion–axial-vector mixing. The addi-
tion of the term with the pion propagator exactly cancels
the third term in (4.6), and the full conserved vertex ac-
quires the form (cf. Figs. 5 and 6)

Γ 5a
µ (k, q, k′ = k + q)

= T a

 γµ − qµ
M(k′) + M(k)

q2 (4.11)

−
(

k + k′ − q
k′2 − k2

q2

)
µ

(√
M(k′)−√

M(k)
)2

k′2 − k2

 γ5.

It satisfies the axial Ward–Takahashi identity,

qµΓ 5a
µ (k, q, k′) = γ5S

−1
F (k+) T a + T aS−1

F (k−) γ5. (4.12)

The axial-vector vertex has a kinematic pole at q2 = 0,
a property that follows from the spontaneous breaking
of the chiral symmetry in the limit of massless u and d
quarks. Evidently, this pole corresponds to the massless
Goldstone pion.

We also need the vertices that couple two currents to
the quark (cf. Fig. 2). In this regard it is convenient to
introduce the notation

Ga
µ (k, q) = iT a (2k + q)µ f (1)(k, k + q), (4.13)

and

Gab
µν (k, q, q′, k′)

= −f (k′)
{

T aT b
[
gµνf (1)(k, k + q + q′) (4.14)

+ [2 (k + q′) + q]µ

× (2k + q′)ν f (2) (k, k + q′, k + q + q′)
]

+ [(q, a, µ)←→ (q′, b, ν)]
}

,

where the second finite-difference derivative is defined by

F (2) (k, k′, k′′) =
F (1)(k, k′′)− F (1)(k, k′)

k′′2 − k′2 . (4.15)

Further, we need to introduce

F (±)a
µ (k, q) = Ga

µ (k, q)±Ga
µ (k − q, q) , (4.16)
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Fig. 6. Diagrammatic
representation of the
quark–quark scattering
matrix, T

F (±)ab
µν (k, q, q′, k′)

= Gab
µν (k, q, q′, k′) + Gab

µν (k′ − q − q′, q, q′, k) (4.17)

±Ga
µ (k, q) Gb

ν (k′ − q′, q′)±Ga
µ (k′ − q, q) Gb

ν (k, q′) .

With the above definitions one gets for the V V contact
term

Γ ab
µν(k, q, q′, k′ = k + q + q′)

= MqF
(+)ab
µν (k, q, q′, k′ = k + q + q′) (4.18)

+f(k)f(k′)G
∫

d4l

(2π)4
Tr

[
S(l)F (+)ab

µν (l, q, q′, l)
]
.

For the AA contact term one finds

Γ 5ab
µν (k, q, q′, k′ = k + q + q′)

= Γ 5ab
(1)µν(k, q, q′, k′ = k + q + q′)

+∆Γ 5ab
µν (k, q, q′, k′ = k + q + q′), (4.19)

where

Γ 5ab
(1)µν(k, q, q′, k′ = k + q + q′)

= MqF
(−)ab
µν (k, q, q′, k′ = k + q + q′) (4.20)

+f(k)f(k′)G
∫

d4l

(2π)4
Tr

[
S(l)F (−)ab

µν (l, q, q′, l)
]
.

An additional contribution appears for the AA iso-triplet
contact term

∆Γ 5ab
µν (k, q, q′, k′ = k + q + q′) (4.21)

= −G
[
τ cGb

ν (k, q′)−Gb
ν (k − q′, q′) τ c

]
×
[∫

d4l

(2π)4
Tr

[
S(l)τ cF (−)a

µ (l, q)
]]

+ [(q, µ, a)←→ (q′, ν, b)] .

In the above expressions Tr denotes the trace over flavor,
color, and Dirac indices.

In the following we also need to introduce the polar-
ization operator in the pseudoscalar channel (cf. Fig. 7),

JPP (q2)δab = − i
M2

q

∫
d4k

(2π)4
M (k) M (k + q) (4.22)

×Tr
[
S(k)γ5τ

aS (k + q) γ5τ
b
]

Fig. 7. The polarization operator of (4.22)

Fig. 8. The correlator of the bare axial current vertex (4.6)
and the pion vertex (4.23)

and the correlator of the axial current vertex (4.6) and the
pion vertex (cf. Fig. 8)

Γ a
π (k, k′) = igπγ5f(k)f(k′)τa, (4.23)

defined by

JπA

(
q2) δab =

qµ

q2

∫
d4k

(2π)4
(4.24)

× Tr
[
S(k)Γ̃ 5a

µ (k, q, k + q)S (k + q) Γ a
π (k + q, k)

]
.

Through the use of the gap equation (3.7) and the
expression for the pion decay constant, fπ, given by [19,23]

f2
π =

Nc

4π2

∞∫
0

du u
M(u)2 − uM(u)M ′(u) + u2M ′(u)2

D2 (u)
,

(4.25)
these correlators have the following expansion at zero mo-
mentum:

JPP (q2) =
1
G

+
f2

π

M2
q

q2+O
(
q4) , JπA

(
q2) = f2

π +O
(
q2) .

(4.26)
In (4.25) we have used the notation u = k2 and M ′(u) =
dM(u)/du. In (4.23) the quark–pion coupling, g2

π =
[J ′

PP (0)]−1, and the pion decay constant, fπ, are connected
by the Goldberger–Treiman relation,

gπ =
Mq

fπ
, (4.27)

which is verified to be valid in the non-local model [23], as
required by the chiral symmetry.

5 Current–current correlators
(transverse parts)

Our goal is to obtain the non-perturbative parts of the
current–current correlators from the effective model and to
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Fig. 9. The resummation of the quark
rescattering in the current–current cor-
relator in the axial-vector channel

Fig. 10. The contact terms in the
current–current correlators

compare them with the existing τ decay data. The current–
current correlators may be represented as a sum of two
terms, dispersive (Fig. 9) and contact (Fig. 10), namely

−Q2ΠJ
µν

(
Q2) = KJ

µν

(
Q2) + SJ

µν

(
Q2) , (5.1)

KV
µν

(
Q2)

=
∫

d4k

(2π)4
Tr
[
ΓV

µ (k, Q, k + Q) S (k + Q)

× ΓV
ν (k + Q,−Q, k) S (k)

]
, (5.2)

KA
µν

(
Q2)

=
∫

d4k

(2π)4
Tr
[
ΓA

µ (k, Q, k + Q) S (k + Q)

× Γ̃A
ν (k + Q,−Q, k) S (k)

]
, (5.3)

SJ
µν

(
Q2) (5.4)

= 2Mq

∫
d4k

(2π)4
Tr

[
S (k) Γ J

µν (k, Q,−Q, k + Q)
]
.

The vertices Γ J
µ (k, q, k′) are given in (4.3) and (4.11),

Γ J
µν(k, q, q′, k′) in (4.18) and (4.19), and Γ̃A

µν (k, q, q′, k′)
in (4.6). The difference in the definitions of Kµν

(
Q2

)
in

(5.2) and (5.3) results from the necessity of taking into
account the rescattering diagrams in the axial channel of
the pseudoscalar (π or η′) mesons (Fig. 9). The correla-
tors (5.1) are defined in such a way that the perturbative
contributions are subtracted,

Πnp
(
Q2) = Πtot

(
Q2)−Πpert

(
Q2) . (5.5)

The perturbative part is obtained from the non pertur-
bative part by simply setting the dynamical quark mass
M(k) to zero. We extract the longitudinal and transverse
parts of the correlators through the use of the projectors

PL
µν =

qµqν

q2 , PT
µν =

1
3

(
gµν − qµqν

q2

)
. (5.6)

We first consider the transverse part of the V correlator,
with the result

KV
T

(
Q2) (5.7)

= 2Nc

∫
d4k

(2π)4
1

D+D−

{
M+M− +

[
k+k− − 2

3
k2

⊥

]
np

+
4
3
k2

⊥

[(
M+ −M−
k2
+ − k2−

)2

(k+k− −M+M−)

− M2
+ −M2

−
k2
+ − k2−

]}
,
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SV
T

(
Q2)

= 4Nc

∫
d4k

(2π)4
M (k)
D (k)

{
M ′ (k) +

4
3

k2
⊥

k2 − (k + Q)2

×
(

M ′ (k)− M (k + Q)−M (k)
(k + Q)2 − k2

)}
, (5.8)

where the notation kµ
⊥ = kµ−Qµ(kQ)/Q2, k± = k±Q/2,

M± = M(k±), D± = D(k±) (5.9)

has been introduced. The subtraction of the perturbative
part amounts to the replacement

1
D+D−

[
k+k− − 2

3
k2

⊥

]
np

=⇒
[
k+k− − 2

3
k2

⊥

] [
1

D+D−
− 1

k2
+k2−

]
. (5.10)

Further, we take the non-singlet transverse projection of
the A correlator and obtain

KA
T

(
Q2) (5.11)

= 2Nc

∫
d4k

(2π)4
1

D+D−

{
−M+M− +

[
k+k− − 2

3
k2

⊥

]
np

+
4
3
k2

⊥

[(√
M+ −

√
M−

)4(
k2
+ − k2−

)2 (k+k− + M+M−)

− (M+ −M−)
(√

M+ −
√

M−
)2

k2
+ − k2−

]}
,

SA
T

(
Q2) = SV

T

(
Q2) (5.12)

− 4Nc

∫
d4k

(2π)4
M (k)
D (k)

8
3
k2

⊥

(√
M (k + Q)−√

M (k)
)2

[
(k + Q)2 − k2

]2 .

Let us consider the difference of the V and A correla-
tors, where a number of cancellations takes place and the
final result is quite simple,

−Q2ΠV −A
(
Q2)

= 4Nc

∫
d4k

(2π)4
1

D
(
k2
+
)
D
(
k2−

)
×

{
M+M− +

4
3
k2

⊥

[
−
√

M+M−
M+ −M−
k2
+ − k2−

(5.13)

+

(√
M+ −

√
M−

)2(
k2
+ − k2−

)2 (√
M+k+ +

√
M−k−

)2
]}

.

One may explicitly verify that the integrand of the above
expression is indeed positive-definite, irrespectively of the

choice of the mass function M(p). Thus the Witten in-
equality (2.5) is indeed fulfilled.

At Q2 = 0 one gets the results consistent with the first
Weinberg sum rule,

−Q2ΠV,T
(
Q2 = 0

)
= 0, −Q2ΠA,T

(
Q2 = 0

)
= −f2

π ,

−Q2ΠV −A,T
(
Q2 = 0

)
= f2

π , (5.14)

where the explicit definition of the pion decay constant
(4.25) is used. This serves as a useful algebraic check.

6 Model parameters

The parameters of the model are fixed in a way typical for
effective low energy quark models. We demand that the
pion decay constant fπ, (4.25), and the quark condensate
(for a single flavor), 〈q̄q〉, given by

〈q̄q〉 = − Nc

4π2

∫
du u

M(u)
D (u)

, (6.1)

acquire their physical values. For simplicity, we take profile
for the dynamical quark mass in a Gaussian form

M(u) = Mq exp
(−2u/Λ2) . (6.2)

With the model parameters

Mq = 0.3 GeV, Λ = 1.085 GeV, (6.3)

one obtains

fπ = 93 MeV, 〈q̄q〉 = − (224 MeV)3 , (6.4)

where the quark condensate is supposed to be normalized
at the scale of a few hundred MeV.

7 Large-Q2 expansion

At large Q2 one finds the following asymptotic expansion
for the difference and sum of the correlation functions in
the inverse powers of Q2 (we do not display here the ex-
ponentially suppressed terms coming from powers of the
dynamical quark mass form factor):

−Q2ΠV −A
(
Q2)∣∣

Q2→∞

=
2

Q4

Nc

4π2

∫
du

u2M2 (u)
D (u)

+O
(

1
Q6

)
, (7.1)

−Q2ΠV +A
T

(
Q2 →∞)

= 2
Nc

4π2

∫
du

u

D (u)

×
[
M (u) M ′ (u)

(
1− u

Q2 −
2
3

u2

Q4

)
− 7

6
uM2 (u)

Q4

]
+O

(
1

Q6

)
. (7.2)
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The effective model considered here is designed to de-
scribe low energy physics. At high energies it is certainly
not expected to reproduce all the details of the asymp-
totic standard operator product expansion of QCD. On
the other hand, it is possible that the OPE works well
only at very short distances while the effective model is
applicable at large and intermediate distances. With this
hope in mind we proceed to analyzing the large-Q2 expan-
sions of the correlators, comparing them numerically to
the OPE results, and trying to match the two approaches.
It is important to note that the power corrections in the
expansions (7.1) and (7.2) have the same inverse powers
of Q2 as the OPE.

We may now compare the expansion of the model cor-
relators to the OPE, (2.6) and (2.7). In (7.1) the formally
leading d = 4 term is absent in the chiral limit in accor-
dance with the second Weinberg sum rule and the OPE
QCD. The second term in (7.1) (and the last term in (7.2))
is proportional to the derivative of the gluon condensate,
and via equations of motion it reduces to the four-quark
condensate term appearing in the OPE, (2.6) and (2.7).
Let us compare the numerical estimates for the local d = 6
terms obtained from the QCD sum rules and from the non-
local chiral quark model, labeled as NχQM:[

OV −A
6

]QCDsr ≈ −(1÷ 2) · 10−3 GeV6,[
OV −A

6

]OPEτ
= −(3.4± 1.1) · 10−3 GeV6, (7.3)[

OV −A
6

]NχQM
= −1.1 · 10−3 GeV6.

The first estimate is found on the basis of low energy the-
orems and QCD sum rules [7], while the second estimate
is made with the help of the τ -decay data [11]. The result
of the present model is closer to the standard estimate
obtained from the low energy phenomenology. Similar fea-
tures of the short-distance behavior of the correlators were
found in the instanton model [13].

In the V +A correlator (7.2) the short-distance expan-
sion contains, in addition to the contributions coming from
the local operators, the unconventional terms originating
from the non-local operators of dimension d = 2, 4 and 6
(the first terms in (7.2)). This kind of unconventional terms
has recently attracted attention due to the revision of the
standard OPE [8], as well as the lattice findings, where
the unconventional power corrections in the vector corre-
lators were reported [9]. The appearance of this correction
is usually related to the existence of the lowest d = 2
condensate

〈(
Aa

µ

)2〉, which is due to an apparent gauge
non-invariance, absent in the standard OPE. However, in
a series of papers ( [50,51], and references therein) it was
argued that it is possible to define the non-local operator
with the lowest dimension in a gauge-invariant way. This
situation is very similar to the famous spin-crisis problem
(cf. [52]). Analogously, in that case there is no twist-two
gluonic operator that may contribute to the singlet axial
current matrix element, yet, it is possible to construct the
matrix element from non-local operators [53]. We thus see
that our effective non-local model shares these unusual ef-
fects generated by the internal non-localities of the quark

interaction. Furthermore, the lowest-dimension power cor-
rections are naturally present in the approaches similar to
the analytic perturbative theory [55]. In that case in order
to compensate the effects of the ghost pole in the strong-
coupling constant, the d = 2 power term is added. As
discussed in [42], the justification of the appearance of the
unconventional power corrections at the same time means
that the standard OPE is valid only at very large momenta.

We also wish to comment that in the model expansion
of the V + A correlator there are no explicit terms with
the gluon condensate of dimension d = 4. The appearance
of this term in the non-local chiral quark model would
correspond to the local matrix element

Nc

4π2

∫
du

uM2 (u)
D (u)

,

that is related to the gluon condensate through the gap
equation (3.7) [44]. However, the coefficient of this term
is equal to zero. This is due to the simple form of the
quark propagator (3.6), which does not allow gluonic cor-
relations between different quark lines. A similar situation
occurs in the QCD sum rules calculations (in the fixed
point gauge), where a non-zero contribution comes from
the diagram with quark lines correlated by soft gluon ex-
change. These (numerically small) correlation terms may
be reconstructed in the effective model by introducing the
gluonic field in the effective action (3.2) by gauging kinetic
and interaction terms (see also cf. [34]). On the other hand
the d = 4 term appears in (7.2) as a non-local matrix ele-
ment.

We end the discussion of the short-range behavior of
the correlators by giving the numerical estimates of the
additional terms appearing in (7.2):

[
OV +A

2

]NχQM
nonloc = − Nc

2π2

∫
du

u

D (u)
M (u) M ′ (u)

= 5.0 · 10−3 GeV2, (7.4)[
OV +A

4

]NχQM
nonloc =

Nc

2π2

∫
du

u2

D (u)
M (u) M ′ (u)

= −1.8 · 10−3 GeV4,[
OV +A

6

]NχQM
nonloc =

4
3

Nc

4π2

∫
du

u3

D (u)
M (u) M ′ (u)

= −7.6 · 10−4 GeV6.

The sum of these terms, taken in the interval of momenta
Q2 ∼ (1÷ 2) GeV2 where the model of large-Q2 expansion
is expected to be valid, agrees reasonably well with the
coefficient of the leading power correction in (2.7),[

OV +A
2

]QCDsr
= 3.0 · 10−3 GeV2, (7.5)

where we have taken the estimate (αs/π) λ2 = −0.12 GeV2

from [42].
Through the use of the factorization hypothesis (2.9)

it is predicted that the chirality flip matrix element OV −A
6
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is strongly enhanced in absolute value over the chirality
non-flip one OV +A

6[
OV −A

6 /OV +A
6

]factor
= −4.5. (7.6)

In the non-local chiral quark model the chirality flip matrix
element OV −A

6 is given by the local matrix element, but
the chirality non-flip one OV +A

6 is a mixture of the local
and non-local matrix elements which transform to each
other by integration by parts. We find that their ratio[

OV −A
6 /OV +A

6

]NχQM ≈ −3.2 (7.7)

has the same tendency as predicted in (7.6). This happens
due to partial compensation of contributions of the local
and non-local matrix elements to OV +A

6 .

8 Low energy observables and the ALEPH data

Let us now consider the low energy region where the ef-
fective model (3.2) should be fully predictive. From (5.13)
and the DGMLY sum rule (2.4) we estimate the electro-
magnetic pion mass difference to be

[mπ± −mπ0 ]NχQM = 4.2 MeV, (8.1)

which is in remarkable agreement with the experimental
value (after subtracting the md −mu effect) [6]

[mπ± −mπ0 ]exp = 4.43± 0.03 MeV. (8.2)

It is interesting to estimate the electric polarizability
of the charged pions [57, 58]. With the help of the DMO
sum rule2, as done by Gerasimov in [56], we find

αE
π± =

α

mπ

[〈
r2
π

〉
3
− IDMO

f2
π

]
, (8.3)

where IDMO is the left-hand side of the DMO sum rule
(2.3)

IDMO (s0) =
1

4π2

∫ s0

0

ds

s
[v1 (s)− a1 (s)] . (8.4)

Equation (8.3) can be interpreted as a sum of the center-of-
mass recoil contribution and the intrinsic pion polarizabil-
ity. In [56] it was demonstrated that in model calculations
there occurs a delicate cancellation between the two con-
tributions of (8.3). This requires the calculation of both
terms consistently at the same level of approximations.

With the experimental value for the pion mean squared
radius [38] and the value of the IDMO integral estimated
from the ALEPH and OPAL data [2][

IDMO
(
m2

τ

)]
exp = (26.3± 1.8) · 10−3, (8.5)

2 In χPT in the one-loop approximation the right-hand side of
the DMO sum rule is expressed through the low energy constant
L10. The extraction of this constant from the experiment was
considered in [10]

one gets from (8.3) the result [2][
αE

π±
]
exp = (2.71± 0.88) · 10−4 fm3. (8.6)

From (2.3) also follows the relation obtained by Ter-
entyev [59], which relates the pion polarizability and the
pion axial-vector form factor,

αE
π± =

αFA

mπf2
π

. (8.7)

The last relation, used with the known values for FA, yields

αE
π± = (2.69± 0.37) · 10−4 fm (8.8)

which is very close to (8.6).
Let us estimate the electric polarizability of the charged

pions within the non-local chiral quark model. By calcu-
lating the derivative of ΠV −A

(
Q2

)
at zero momentum we

estimate the left-hand side of the DMO sum rule as

[IDMO (s0 →∞)]NχQM = 18.2 · 10−3. (8.9)

The value of the pion charge radius squared,[〈
r2
π

〉]
NχQM = 0.33 fm2, (8.10)

obtained in our model from the derivative of the charged
pion form factor, is close to its limit of the local chiral
model, found by Gerasimov long ago [56]:[〈

r2
π

〉]
χPT =

Nc

4π2f2
π

= 0.34 fm2. (8.11)

The model predictions for
〈
r2
π

〉
and IDMO are somewhat

smaller than the experimental values given above. The
reason for this discrepancy may be attributed to vector
meson degrees of freedom, neglected in our treatment, and
to pion loops absent in the large-Nc limit. However, these
unconsidered contributions are essentially canceled in the
combination (1.4) defining the electric pion polarizability
(see, e.g., [14] for discussion). From (8.3) we find with
values given in (8.9) and (8.10) the value[

αE
π±

]
NχQM = 2.9 · 10−4 fm3, (8.12)

which is close to the experimental value (8.6) and also
to the prediction of the chiral perturbation theory at the
one-loop level [60],[

αE
π±

]
χPT = 2.7 · 10−4 fm3. (8.13)

Let us note also that (8.12) is a factor of 2 smaller from
the estimates obtained in a local chiral quark model [61],
αE

π± = 5.8·10−4 fm3. We thus see that the model prediction
for the pion polarizability, (8.12), is in a very reasonable
agreement with the experimental data.

Next, we compare the model correlators with the
ALEPH data, presented in Fig. 11. The ALEPH and OPAL
data integrated up to the τ mass satisfy all chiral sum rules
within the experimental uncertainty, but the central values



A.E. Dorokhov, W. Broniowski: Vector and axial-vector correlators in a non-local chiral quark model 91

τ– → (V,A, I=1) ντ

parton model/perturbative QCD

Mass2  (GeV/c2)2

υ1 –
  a1 ALEPH
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Fig. 11. Inclusive vector minus axial-vector spectral function,
v1 − a1, measured by the ALEPH collaboration [1]

Fig. 12. Euclidean-momentum correlation function,
−Q2ΠV −A(Q2)/f2

π , constructed in the present model (solid
line), in the model of [15] (dashed line), and reconstructed
via (8.14) from the ALEPH experimental spectral function of
Fig. 11 (dash-dotted line)

differ significantly from the chiral model predictions. Fol-
lowing [13] we use s0 = 2.5 GeV2 as an upper integration
limit, the value at which all chiral sum rules are satis-
fied assuming that v1(s) − a1(s) = 0 above s0. Finally,
a kinematic pole at q2 = 0 is added to the axial-vector
spectral function. The resulting unsubtracted dispersion
relation between the measured spectral densities and the
correlation functions becomes

ΠT
V

(
Q2)−ΠT

A

(
Q2) =

1
4π2

∫ s0

0
ds

v1(s)− a1(s)
s + Q2 − f2

π

Q2 ,

(8.14)

Fig. 13. The ratio of the non-perturbative parts of the V − A
to V + A correlators in the non-singlet channel

where f2
π is given by the WSR I,

f2
π =

1
4π2

∫ s0

0
ds [v1(s)− a1(s)] . (8.15)

Having transformed the data into the Euclidean space,
we may now proceed with the comparison to the model,
which obviously applies to the Euclidean domain only. Ad-
mittedly, in the Euclidean presentation of the data the
detailed resonance structure corresponding to the ρ and
a1 mesons seen in the Minkowski region is smoothed out,
hence the verification of model results is not as stringent
as would be directly in the Minkowski space. In Fig. 12 we
show the normalized curves corresponding to the experi-
mental data and the model prediction. We also show the
prediction of the model of [15] (minimal hadronic approx-
imation, MHA [62,63])

[
ΠT

V −A

(
Q2)]

MHA =
f2

ρM2
ρ

Q2 + M2
ρ

− f2
aM2

a

Q2 + M2
a

− f2
π

Q2 , (8.16)

where the contributions of the ρ and a1 mesons are taken
into account with the model parameters Mρ = 0.750 GeV
and fa = M2

ρ /M2
a = 0.5. Other parameters are constrained

by the Weinberg sum rules. As demonstrated in [15], the
good agreement between the data and the model predic-
tions is far from trivial, since many analytic approaches
discussed in the literature meet definite difficulties in the
description of the ALEPH data in the region of moderately
large Q2. In Fig. 13 we also present the ratio of the non-
perturbative parts of the V −A (5.13) to V +A correlators
in the non-singlet channel.

To conclude this section we wish to recall that quite
similar calculations of the vector and isovector axial-vector
correlators within a non-local model were done some time
ago by Holdom and Lewis [45]. There are certain differ-
ences in the form of the non-local interaction and, as a
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consequence, the form of quark–current vertices is differ-
ent. A more principal difference is that the authors of [45]
have chosen a “two phase” strategy, describing the low en-
ergy part of correlators by full non-perturbative vertices
and propagators, while the high energy parts were com-
puted in the approximation when one of the vertices is
local. In this case the problem of matching of two regimes
occurs already at rather low energy scales. In the present
calculations one prolongs the applicability of the model
up to moderately large energies, which inter alias results
in a good description of the ALEPH data. On the other
side, we have to admit that one of the goals of both ap-
proaches, namely the finding of a direct correspondence
between the effective model calculations and the OPE in
QCD has not yet been reached (see Sect. 7). To make the
correspondence closer it is necessary to supply the model
with more detailed information on the soft quark–gluon
interaction3.

9 Current–current correlators
(longitudinal parts)

In this section we demonstrate explicitly the transverse
character of the V and isovector (IV) A correlators (Figs. 9
and 10). For the longitudinal component of the V correlator
we get

KV
L
(
Q2) =

4Nc

Q2

∫
d4k

(2π)4
M (k)
D (k)

[M (k + Q)−M (k)] , (9.1)

SV
L
(
Q2) = −KV

L
(
Q2) ,

and therefore
−Q2ΠV

L
(
Q2) = 0, (9.2)

as it certainly should be by the requirement of the vector
current conservation.

Further, we consider the longitudinal projection of the
A correlator. Then, we get contributions from the one-
quark-loop diagram

KA
L,1

(
Q2) = −4Nc

Q2

∫
d4k

(2π)4
M (k)
D (k)

[M (k + Q) + M (k)] ,

(9.3)
the two-loop diagram in the isovector channel

KA
L,2

(
Q2) =

8Nc

Q2

[∫
d4k

(2π)4
M (k)
D (k)

√
M (k + Q) M (k)

]2

×
[∫

d4k

(2π)4
M2 (k)
D (k)

]−1

, (9.4)

3 Let us also refer to other important work [46,47], where the
problem of connection between the effective 4-fermion models
and QCD has been discussed

the one-loop contact diagram

SA
L,1

(
Q2) =

4Nc

Q2

∫
d4k

(2π)4
M (k)
D (k)

(9.5)

×
[
3M (k) + M (k + Q)− 4

√
M (k) M (k + Q)

]
,

and, finally, from the two-loop contact diagram in the
isovector channel

SA
L,2

(
Q2) = −8Nc

Q2

×
[∫

d4k

(2π)4
M (k)
D (k)

[
M (k)−

√
M (k + Q) M (k)

]]2

×
[∫

d4k

(2π)4
M2 (k)
D (k)

]−1

. (9.6)

The sum of all these contributions leads to the desired
result

−Q2ΠA,IV
L

(
Q2) = 0 (9.7)

consistent with the isovector axial current conservation in
the strict chiral limit.

10 Singlet axial-vector current correlator
and the topological susceptibility

The cancellations in the longitudinal channels are conse-
quences of the current conservation and follow simply from
the application of the non-anomalous Ward–Takahashi
identities. We have explicitly demonstrated this in the pre-
vious section in order to show the consistency of our cal-
culations. The issue becomes important when we consider
the longitudinal part of the isosinglet axial-vector current
correlator which is not conserved due to the UA (1) ax-
ial Adler–Bell–Jackiw anomaly. This channel is dominated
not by the pion, but by the η′-meson intermediate state.
Thus, in addition to the non-local interaction present in
(3.2) we also need to include the interaction (3.5), where
an exchange of the “η” singlet meson, the SU(2) analog
of the η′ meson, occurs.

It is well known that due to the anomaly the singlet
axial-vector current is not conserved even in the chiral
limit,

∂µJ50
µ (x) = 2NfQ5 (x) , (10.1)

where Q5 (x) is the topological charge density. In QCD
it is defined as Q5 (x) = (αs/8π)Ga

µν(x)G̃a
µν(x), where

Ga
µν is the gluonic field strength, and G̃a

µν is its dual,
G̃a

µν = εµνλσGa
λσ. The correlator of the singlet axial-vector

currents has the same Lorentz structure as in (1.2), but
without flavor indices and with T a ≡ 1. In the chiral limit
its longitudinal part is related to the topological suscep-
tibility, the correlator of the topological charge densities
Q5 (x),

χ
(
Q2) = i

∫
d4x eiqx〈0 |T {Q5(x)Q5(0)}| 0〉, (10.2)
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by the relation (see, e.g., [64])

ΠA,0
L

(
Q2) =

(2Nf )2

Q2 χ
(
Q2) . (10.3)

At high Q2 the OPE for χ
(
Q2

)
predicts [65]

χ
(
Q2 →∞)

= − αs

16π

〈αs

π
(
Ga

µν

)2〉+O(Q−2)+O(e−Qρ),

(10.4)
where the perturbative contributions have been subtracted,
and the exponential corrections are due to non-local instan-
ton interactions [64].

At low Q2 the topological susceptibility χ
(
Q2

)
can

be represented as a sum of contributions coming purely
from QCD and from hadronic resonances, [64]. Crewther
proved the theorem [67] that χ (0) = 0 in any theory where
at least one massless quark exists (the dependence of χ (0)
on current quark masses has been found in [66]4). Also, the
contributions of non-singlet hadron resonances are absent
in the chiral limit. Thus, in the low-Q2 limit for massless
current quarks one has[

χ
(
Q2 → 0

)]
χQCD = −Q2χ′(0) +O(Q4). (10.5)

The estimates of χ′(0) existing in the literature are rather
controversial5:

χ′(0) = (48± 6 MeV)2 [69],

χ′(0) = (26± 4 MeV)2 [70]. (10.6)

This makes further model estimates valuable.
Now we turn to the model calculations. The bare isos-

inglet axial-vector current obtained from the interaction
terms (3.3) and (3.5) by the rules described in Sect. 4 be-
comes

Γ̃ 50
µ (k, q, k′ = k + q) (10.7)

= γµγ5 − γ5(k + k′)µ

(√
M(k′)−√

M(k)
)2

k′2 − k2

+γ5
qµ

q2 2
√

M(k′)M(k)
[

G′

M2
q

JAP (q2)− G′

G

]
,

where JAP (q2)is defined in (4.7). In order to get the full
current we have to consider rescattering in the channel with
the quantum numbers of the singlet pseudoscalar meson,
“η” , which results in

Γ 50
µ (k, q, k′ = k + q) (10.8)

= γµγ5 − γ5(k + k′)µ

(√
M(k′)−√

M(k)
)2

k′2 − k2

4 Consistencies of the axial-vector current conservation and
the UA(1) problem are also discussed in [68]

5 The results obtained in [71] concerning χ(0) and χ′(0)
contradict to the low energy theorems

−γ5
qµ

q2 2
√

M(k′)M(k)
G′

G

1−GJPP (q2)
1−G′JPP (q2)

.

Because of the singlet axial anomaly this current does
not contain the massless pole anymore, since according
to (4.26) one has at zero momentum

1−GJPP (q2)
−q2 = G

f2
π

M2
q

. (10.9)

Instead, it develops a pole at the “η” meson mass. So,
within the model considered the same mechanism is re-
sponsible for the sponteneous breaking of chiral symmetry
and violation of the UA(1) symmetry.

The vertices satisfy the anomalous Ward–Takahashi
identities:

qµΓ̃ 50
µ (k, q, k′ = k + q)

= q̂γ5 − γ5 [M(k′) + M(k)] (10.10)

+ γ52
√

M(k′)M(k)
(

1− G′

G
+ G′ JAP (q2)

M2
q

)
,

and

qµΓ 50
µ (k, q, k′ = k + q)

= q̂γ5 − γ5 [M(k′) + M(k)]

+ γ5
2
√

M(k′)M(k)
1−G′JPP (q2)

(
1− G′

G

)
, (10.11)

where the last term is due to the anomaly. Thus the QCD
pseudoscalar gluonium operator is interpolated by the
pseudoscalar effective quark field operator with coefficient
expressed in terms of dynamical quark mass. In the ef-
fective quark model the connection between quark and
integrated gluon degrees of freedom is fixed by the gap
equation (3.7) [44]. By considering the forward matrix el-
ement (q = 0) one deduces that the singlet axial constant
is not renormalized within our scheme: G

(0)
A (0) = 1. In

order to get reduction of the singlet axial constant (“spin
crisis”) we need to consider the effects of polarization of
topologically neutral vacuum (see, e.g., [52]).

It is instructive first to consider the longitudinal part of
the correlator of the local vertex, γµγ5, and the non-local
vertex of (10.8), which is the construction of Pagels and
Stokar [48]. In this model the decay constant is defined by

f2
π,PS =

Nc

8π2

∞∫
0

du u
2M(u)2 − uM(u)M ′(u)

D2 (u)
. (10.12)

Then, through the use of (10.3) we get for the topological
susceptibility the result

(2Nf )2 χPS
(
Q2) = − G−G′

G [1−G′JPP (Q2)]
(10.13)

× NcNf

4π2

∫
d4k

√
M+M−

D+D−
[M+ (k−q)−M− (k+q)] ,
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Fig. 14. Topological susceptibility versus Q2 predicted by the
model with G′ = 0.1G, (10.16) (solid line), and by the Pagels–
Stokar construction, (10.13) (dashed line)

with the coefficients of the low-Q2 expansion given by

χPS (0) = 0, χ′
PS (0) =

f2
π,PS

2Nf
. (10.14)

Hence, the result is consistent with the Crewther theorem
and it provides the estimate of χ′

PS (0) ≈ (39 MeV)2 ob-
tained for Nf = 3. The second relation may be rewritten in
the form resembling the generalized Goldberger–Treiman
relation, as advocated by Veneziano and Shore [70]. In-
deed, by using the standard Goldberger–Treiman relation,
(4.23), valid in a given model, one finds

Mq = gPS
π

√
2Nfχ′

PS (0), (10.15)

which is just the quark-level relation from [70]. At large Q2

the quantity χPS
(
Q2

)
decreases according to the power of

the dynamical quark form factor.
Now let us turn to the full model calculation. Proceed-

ing in a similar manner as in the previous sections we get
the topological susceptibility in the form

− (2Nf )2 χ
(
Q2)

= 2Nf

(
1− G′

G

){
Q2JπA

(
Q2)

×
[
1− G′JAP (Q2)

M2
q

+
1

1−G′JPP (Q2)

]
(10.16)

+ M2
q JPP

(
Q2)(1− G′

M2
q

JAP (Q2)
)

×
[
GJAP (Q2)

M2
q

− G−G′

G [1−G′JPP (Q2)]

]

+
G

M2
q

[
4NcNf

∫
d4k

(2π)4
M (k)
D (k)

×
[
M (k)−

√
M (k + Q) M (k)

]]2
}

,

where we have used the relation between the singlet current
correlator and the topological susceptibility of (10.3). At
large Q2 one obtains the power-like behavior consistent
with the OPE prediction (10.4), namely

− (2Nf )2 χ
(
Q2 →∞)

=
2NfM2

q

G

(
1− G′

G

)
. (10.17)

At zero momentum the topological susceptibility is zero,

χ (0) = 0, (10.18)

in accordance with the Crewther theorem. For the first
moment of the topological susceptibility we obtain

χ′ (0) =
1

2Nf

{
f2

π

(
2− G′

G

)
+
(

1− G′

G

)2

J ′
AP (0)

}
,

(10.19)
where f2

π and J ′
AP (0) are defined in (4.25) and (4.9), re-

spectively.
In order to get numerical results we need to specify fur-

ther the details of the model. We consider two possibilities.
One involves the interaction with the exact symmetry as
provided by the ’t Hooft determinant, G′ = −G. For the
second possibility the constants G and G′ are considered
as independent of each other, and their values are fixed
with the help of the meson spectrum. In this more realis-
tic scenario one has approximately the relation G′ = 0.1 G
(for typical sets of parameters, c.f. [23]). Then we get the
following estimates for the first moment of the topological
susceptibility:

χ′(0) = (55 MeV)2 (G′ = −G), (10.20)

χ′(0) = (50 MeV)2 (G′ = 0.1 G). (10.21)

For the above estimates we have taken Nf = 3. Since
the flavor number enters only through the factor of 2Nf

present in the definition (10.3), in this sense it is external
to the model and its inclusion is very simple. We can see
that the model gives the values of χ′(0) which are close
to the estimate of [69]. In Fig. 3 we present the model
predictions for the topological susceptibility at low and
moderate values of Q2 for the cases of the full equation
(10.16) and the Pagels–Stokar (10.13) model calculations.

We should note that the predictions of our model have a
limited character because we have used the SUf (2) model
in the chiral limit and have not considered mixing ef-
fects. However, our final result is formulated in terms of
a physical observable, fπ, and thus we believe that the
presented predictions may be not far from more realistic
model calculations. In the region of small and intermediate
momenta our results are quantitatively close to the pre-
dictions of the QCD sum rules with the instanton effects
included [64]. In our opinion, both the instanton-based cal-
culations (our model with (G′ = −G) and the interpolation
of the model [64]) overestimate the instanton contributions
in the region Q2 ∼ 0.5–2 GeV2. It would be interesting to
verify the predictions given in Fig. 14 by modern lattice
simulations.



A.E. Dorokhov, W. Broniowski: Vector and axial-vector correlators in a non-local chiral quark model 95

11 Conclusions

In this work we have analyzed the non-perturbative parts
of the Euclidean-momentum correlation functions of the
vector and axial-vector currents within an effective non-
local chiral quark model. To this end, we have derived the
conserved vector and isotriplet axial-vector currents and
demonstrated explicitly the absence of longitudinal parts
in the V and non-singlet A correlators, which is conse-
quence of the gauge invariance of the present approach. On
the other hand, the singlet A correlator gains an anomalous
contribution. From the properties of the V −A correlator
we have shown the fulfillment of the low energy relations.
The values of the π± − π0 electromagnetic mass differ-
ence and the electric pion polarizability are estimated and
found to be remarkably close to the experimental values.
In the high energy region the relation to OPE has been
discussed. In particular, the estimate of the 1/Q2 coeffi-
cient is in agreement with the recent lattice findings and
the modified OPE phenomenology. We stress that the mo-
mentum dependence of the dynamical quark mass is crucial
for the fulfillment of the second Weinberg sum rule. The
combination V −A receives no contribution from pertur-
bative effects and provides a clean probe for chiral sym-
metry breaking and a test ground for model verification.
We have found that our model describes well the trans-
formed data of the ALEPH collaboration on the hadronic
τ decay. The combination V + A, on the other hand, is
dominated by perturbative contributions which are sub-
tracted from our analysis. By considering the correlator of
the singlet axial-vector currents the topological suscepti-
bility has been found as a function of the momentum, and
its first moment is predicted. In addition, the fulfillment
of the Crewther theorem has been demonstrated.
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